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The low-temperature specific heat and magnetization of dilute magnetc impurities in noble metals are 
studied using a simple model in which a Ruderman-Kittel-Yosida (RK Y) interaction is assumed between the 
magnetic impurities. The method used is based on, and is an extension of, the theory developed by Klein and 
Brout (KB) for the treatment of the T = 0 specific heat of dilute Cu-Mn. Departures from the KB treatment 
for the case when 7 V 0 are considered. The magnetic impurities are considered to be randomly and uniformly 
distributed over the whole solid. The thermodynamic properties of the system are obtained by performing a 
statistical average over the positions of the particles and an ensemble average over their spins in an Ising 
model. The effective field H0 about an impurity is defined by the relation Ho=XvojfXj, where vQj is the RKY 
interaction and juy is the spin of an impurity located at site./.The probability distribution of this effective field 
as a function of the impurity concentration, the strength of the RKY interaction, and the temperature is ob
tained. Use of this probability distribution gives the low-temperature specific heat of magnetic impurities in 
noble metals over a range of temperatures and concentrations in good agreement with experiment. For each 
class of impurities the strength of the RKY interaction is found from the low-temperature specific-heat data. 
A connection between the probability distribution of H0 and the hyperfine field at the nucleus, as measured 
by a Mossbauer experiment, is made. The recently, reported Mossbauer, specific-heat, and magnetic-
susceptibility measurements on gold-rich Au-Fe seem to be consistent with our model. We thus conclude 
that no long-range magnetic order exists in dilute Au-Fe for concentrations of less than about 5% iron. 

1. INTRODUCTION 

A GREAT deal of experimental data have recently 
been obtained on the low-temperature specific 

heat and magnetization of transition-ion impurities in 
noble metals. These materials show anomalous low-
temperature specific heat and magnetic properties. The 
purpose of this paper is to explain the essential features 
of some of these experiments using a simple model. In 
this model, we assume a Ruderman-Kittel-Yosida1'2 

(henceforth abbreviated RKY) interaction between the 
magnetic impurities, and use an extension of the 
statistical theory for dilute ferromagnets developed by 
Klein and Brout3 (henceforth referred to as KB). We 
find that the RKY potential between the magnetic 
impurities explains, to a first approximation, the low-
temperature cooperative phenomena of localized tran
sition-ion impurities in noble metals. A brief communi
cation to this effect has already been published.4 

A summary of the experimental specific-heat results 
is given in Table I. A feature common to all these 
materials is that they exhibit a large excess low-
temperature specific heat ACV compared to the pure-
host materials. We find that in each case (except 
possibly Au-Co) in which the experiment was performed 
at sufficiently low temperatures, ACV/T is large and 
approximately independent of the impurity concen
tration. ACV/T decreases with temperature and becomes 
concentration dependent for higher temperatures.6 

Experiments are also available on the low-tempera-

1 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954). 
2 K. Yosida, Phys. Rev. 106, 893 (1957). 
3 M. W. Klein and R. Brout, Phys. Rev. 132, 2412 (1963) 

(henceforth referred to as KB). 
4 M. W. Klein, Phys. Rev. Letters 11, 408 (1963). 
5 R. R. Hake and J. A. Cape, North American Science Center 

Report, February 1964. Also see W. M. Klein, J. Appl. Phys. 35, 
944 (1964). 

ture magnetic susceptibility of Cu-Mn,6~9 Ag-Mn,6 and 
Cu-Co.10'11 More recently, susceptibility measurements 
were performed on dilute concentractions of Cr, Mn, 
and Fe in gold.12 A feature common to these data is a 
maximum in the susceptibility as a function of the 
temperature. The temperature at which the suscepti
bility is a maximum, rmax, is approximately propor
tional to the impurity concentraction. This behavior is 
not shared by cobalt impurities in gold.12 

In addition to the anomalies mentioned above, these 
materials exhibit low-temperature-resistivity anoma
lies,13-14 remanent magnetizations which vary as a 
function of temperature,15 and large anomalous thermo
electric powers.16 In this paper we only discuss the 
thermodynamic properties of these systems, relegating 
the treatment of the nonequilibrium properties to a 
future publication. 

An outline of this paper is as follows. In Sec. 2 we 
summarize the theory for dilute ferromagnets developed 
by Klein and Brout,3 carefully pointing out some of the 
approximations involved. We discuss the consequences 

6 J. Owen, M. Browne, W. D. Knight, and C. Kittel, Phys. 
Rev. 102, 1501 (1956). 

7 J. Owen, M. Browne, V. Arp, and A. F. Kip, Phys. Chem. 
Solids 2, 85 (1957). 

8 1 . S. Jacobs and R. W. Schmitt, Phys. Rev. 113, 459 (1959). 
9 R. W. Schmitt and I. S. Jacobs, Phys. Chem. Solids 3, 324 

(1957). 
10 R. Tournier and L. Weil, J. Phys. Radium 23, 522 (1962). 
11 R. Tournier, J. J. Veyssie, and L. Weil, J. Phys. Radium 23, 

672 (1962). 
12 O. S. Lutes and J. S. Schmit, Phys. Rev. 134, A676 (1964). 
13 Tineke Van Peski-Tinbergen and A. J. Dekker, Physica 29, 

917 (1963). This paper contains an excellent set of references on 
this subject. 

14 G. J. Van den Berg and J. de Nobel, J. Phys. Radium 23, 665 
(1962). 

15 J. S. Kouvel, Phys. Chem. Solids 24, 795 (1963). This paper 
contains a set of references on the experimental data. 

16 D. K. C. MacDonald, Thermoelectricity (John Wiley & Sons, 
Inc., New York, 1962), and references therein. 
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TABLE I. The summary of the experimental low-temperature specific-heat results on dilute magnetic impurities on noble metals. 

Approximate 
concentration 

Temperature Concentration dependence 
Material range (°K) range (%) ACV/T Reference 

Cu-Mn 1.5-4 0.35-10 c° Zimmerman & Hoarea 

Crane & Zimmermanb 

Cu-Fe 0.4-1.5 0.05,0.1,0.2 c1 Franck, Manchester and Martin0 

Crane & Zimmermand 

Cu-Co 3-5 2.2-2.5 c1 Tournier & Weil6 

Tournier et alJ 
Cu-Co 3-5 0.5-2 c2 Ref. d, e, and f 
Au-Fe 1.5 0 . 1 , 0 . 2 , 0 . 5 c° L. T. Crane* 
Au-Fe 2-4 0.1,0.2,0.5 c1 Ref. g 
Au-Co 3-5 ~0.5-2 <r>/2 L. T. Crane* 
Ag-Mn ~ 2 0.28,0.40 ~c° DeNoble & DuChatenier1 

Ag-Mn ~ 3 0.28,0.40 ~ c J Ref. i 

a J. E. Zimmerman and F. E. Hoare, Phys. Chem. Solids 17, 52 (1960). 
bSee Ref. 31. 
o See Ref. 33. 
d L. T. Crane and J. E. Zimmerman, Phys. Rev. 123, 113 (1961). 
* See Ref. 10. 

of the correlation length derived in the KB treatment 
and extend the theory to higher temperatures. Since 
the thermodynamic functions for the system are ob
tained from the probability distribution of the effective 
fields, this probability distribution is discussed ex
tensively in Sec. 3. We find that if we fix a spin at an 
arbitrary origin, the few spins close to the one fixed at 
the origin determine the behavior of the probability 
distribution, and the fields from the far-away spins 
contribute in an unimportant way. This is because the 
effective fields from the far-away spins are screened by 
the alternating RKY potential. We also discuss briefly 
a possible connection between our theory and a Moss-
bauer experiment. In Sec. 4 we discuss the specific heat 
and the magnetization of these dilute systems. We find 
that the low-temperature specific heat and magneti
zation of localized magnetic impurities in noble metals 
are explained by this model. An exception to this 
appears to be dilute impurities of cobalt in gold. In 
Sec. 5 we discuss the behavior of gold-iron in detail, and 
point out that the recently reported specific-heat, 
magnetization, magnetic susceptibility, and Mossbauer 
experiments on gold-iron seem to be consistent with 
our model. 

2. THEORETICAL CONSIDERATIONS 

We propose to examine the thermodynamic proper
ties of a system of dilute magnetic impurities in a 
nonmagnetic host lattice. We assume that a RKY 
potential is the interaction mechanism between the 
magnetic impurities and discuss the behavior of the 
system, first for the case in which the temperature is 
zero, and then for 7V0. To do this, we first briefly 
review the r = 0 case discussed previously,3'17 thereby 

17 That a Ruderman-Kittel interaction explains the low-tem
perature specific heat of Cu-Mn was first pointed out by W. 
Marshall, Phys. Rev. 118, 1520 (1960). 

*See Ref. 11. 
E See Ref. 24. 
hL. T. Crane, Phys. Rev. 125, 1902 (1962). 
*See Ref. 32. 

introducing the background for a further extension of 
the theory. 

We consider a crystal having N magnetic impurities 
distributed over No sites such that N/No^c, where c is 
the fractional impurity concentration and No is the 
total number of lattice sites in the crystal. The position 
coordinate r of each impurity is an independent random 
variable uniformly distributed over the volume of the 
crystal V with probability 1/V. With an impurity at 
position i, we have associated the random spin variable 
ixi. We use an Ising model, a model in which in may 
take the values of ± 1 only.18 The probability that in 
has a definite orientation is, in general, a function of the 
temperature. The free energy for the system is given by 

logZ-log £ exp[ - /5E Hvwl, (2.1) 
all i<j 

states 

where Z is the partition function for the system and 
P=l/kT, where T is the temperature, vy is the spatial 
part of the RKY potential given by 

vij— Q>L(X cos#—sinx)/#4], (2.2) 

where x— 2&j?r#, where IZF is the Fermi momentum and 
18 It has been argued that it is incorrect to use an Ising model 

for the treatment of the low-temperature specific heat. The reason
ing goes as follows. Consider the far-away spins. Since these are, 
in our model, approximately uncorrelated to the spin at the origin, 
any direction of orientation is permissible for the spins. Hence, the 
probability distribution of the field is three dimensional, and the 
low-temperature specific heat is proportional to T3 instead of T, 
and our conclusions on the low-temperature specific heat are in
correct. We would like to remark that the above argument would 
be correct if all spins were classical vectors. However, since in 
the region r<Rc the spins are strongly correlated to the spin at 
the origin, we expect that the Ising model is valid for this region. 
From the discussion in Sec. 2, we find that the behavior of the 
probability distribution is governed by the fields from the "inside" 
region. Therefore, the Ising model should have reasonable validity 
at low temperatures, except possibly at T equal to zero where a 
Heisenberg model would give a T3 dependence of the specific heat. 
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fa the distance between the impurities at sites i and j . 
For use below, we also define 

a^JS2(2kF)\ (2.3) 

where a is the coefficient of Eq. (2.2) and J is an 
interaction energy which may be obtained from Yosida's 
paper,2 and S is the magnitude of the impurity spin. 
The value of JS2 will be given in units of degrees 
Kelvin divided by the cube of a lattice constant. Note: 
Henceforth, all lengths will be measured in dimension-
less units of the lattice constant unless explicitly stated 
otherwise. The spin average in Eq. (2.1) is performed 
using the condition that no long-range order exists in 
the solid (as discussed in KB). The partition function 
is expanded diagrammatically using the semi-invariant 
method of Brout,19 and the diagrams are summed 
according to a power series in the impurity concen
tration. The partition function is evaluated exactly up 
to and including the fourth virial coefficient (3rd power 
in the concentration), and the contribution from higher 
virial coefficients is approximated. With an impurity 
fixed at an arbitrary origin 0 and another at position j , 
Eq. (2.1) is differentiated with respect to ~|/3^oy to 
give the two-particle spin correlation function {MW)> 

00 

lim (/joM/)«lim{ — tanh^oy+2 ]£ cn~2 

X E <[1+ Z exp(2/3{K| 

H^+i l} ) ] - 1 )} , (2.4) 

where the indices h, h, • • •, in run from 1 to iVo, the 
brackets { ) denote an average over the coordinates 
of all spins other than 0 and 7, and c is the fractional 
concentration, k denotes the bonds in the n vertex 
diagram, as outlined in KB. In the limit as /?—»oo? we 
observe that whenever \v^\ > \vktk+1\, the second term 
in Eq. (2.4) is zero. Thus, at T=0, the summation in 
Eq. (2.4) is restricted to sites within an approximate 
radius of r0y from the origin. Evaluating Eq. (2.4) in 
the limit as T—> 0 gives 

Wi(r=o)>s^(r,o). < i - 2 i ; <*„(<*)»-*, (2.5) 
n==3 

where z is the total number of sites within a volume of 
the solid of radius r0j and an is a number of order unity. 
Using Eq. (2.5) and a self-consistent calculation of the 
spin-correlation function for spins at large distances 
from the origin,3 we find that the spin-correlation 
function g(r,T) at T = 0 is 

f [ l - ( ^ / ^ c 3 ) ] s g n [ . ( r ) ] r<Rc 
g(rfi)~\ , (2.6a) 

where sgn|j;(r)]=zfc:l, depending on the sign of the 
19 R. Brout, Phys. Rev. 115, 824 (1959). 

RKY potential, and Rc is the correlation length, which 
at T = 0 i s 

Rc(G)~Q.S\<rlH, (2.6b) 

where d is the lattice constant. Rc is determined from 
the condition that Eq. (2.5) equals zero. We find that 
as the concentration decreases, the correlation length 
increases in such a fashion that the average number of 
spins within a volume with radius Rc(0) stays fixed. 
This number is, on the average, about 3.3. We also 
find that an impurity located close to the spin at the 
origin fxo will be strongly correlated to it, whereas one 
located far away (r>Rc) will have a spin orientation 
that is approximately random with respect to /xo. This 
summarizes the major conclusions of the KB theory. 

The correlation length is important to the solution 
of the random ferromagnet and describes what we may 
call a magnetic screening behavior of the system. 
Because of the alternating sign of the RKY potential 
as a function of position, the intermediate spins tend 
to screen the correlation between the nmgnetic im
purities. However, the screening mechanism described 
here is not unique to the RKY potential, but exists for 
other spin-dependent potentials of the form given by 
Eq. (2.2), provided that the interaction potential 
alternates in sign as a function of position with a period 
that is not commensurate with the lattice, and pro
vided the potential converges rapidly enough. 

Since the correlation length given by Eq. (2.6b) is 
the central result of our theory, we make a few remarks 
about its validity. The result of Eq. (2.4) is derived 
from the partition function, and thus the length Rc 

also results from the partition function. The correlation 
length divides the system into an "inside," or strongly 
correlated region, and an "outside," or weakly corre
lated region. This division is again derived from the 
partition function. In our approximation we consider 
the two-particle spin-correlation function only (and 
neglect higher spin correlations); thus the spins in the 
"outside region" are approximately radomly oriented 
with respect to the spin placed at the origin of the 
"inside" region. We call one of these regions of strong 
spin correlation a "cluster." However, it is not proper 
to associate a domain wall or any other physically 
well-defined boundary with one of these clusters. Also, 
it is equally valid to consider the position of any one 
magnetic impurity in the solid as an origin as it is any 
other. The screening in the dilute ferromagnetic case 
treated here is, in principle, no different from the 
screening behavior of the charged particles in an electron 
gas, where one chosen origin is just as good as any other 
origin. Admittedly, the problem becomes more com
plicated because of the discrete sites in the solid. 

To extend our theory to temperatures other than 
zero, we have to reevaluate the derivations which 
resulted in Eq. (2.4). This is very difficult. Therefore, 
instead of evaluating the spin-correlation function as a 
function of the temperature from the partition function, 
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we use a reasonable physical approach which follows 
from the following approximation. The spins within 
the correlation length finds themselves in a field which 
is approximately proportional to 1/f3. Thus, the spins 
close to the edge of the correlation length are only 
weakly coupled to the one at the origin. As the tem
perature is increased, it is reasonable to assume that 
these weakly coupled spins at the edge of the corre
lation length, and then the spins closer to the origin, 
are decoupled from juo- For very small, but nonzero, 
temperatures we obtain the spin correlation function 
from Eqs. (3.2), (3.9), and (3.11) of KB to be [no 
approximation is involved in going from Eq. (3.11) of 
KB to Eq. (2.7)] 

g(r,T)=faw(T))~£l-(f*/R*)l taah/fooi, (2.7) 

where fi^l/ksT. Using Eq. (2.7) with the previous 
discussion, we now find an approximation to the 
correlation length as a function of temperature. For 
this purpose we distribute the spins over the correlated 
volume with a density p(r), Since the impurities are 
uniformly distributed in the solid, p(r) may be assumed 
to be a constant. At T=0, the number of spins corre
lated to the spin at the origin, n(Q), is 

i(0) •f 
J o 

p(r)\g(r,0)\<Pr, (2.8) 

where the vertical bars indicate the magnitude of 
g(r,0). Let n(T) be the number of spins correlated to 
/xo at temperature T; then 

i n(T)= / p(r)\g(r,T)\<Pr. (2.9) 

The ratio of Eq. (2.9) to Eq. (2.8) gives the fraction of 
the spins that are still correlated to juo at a temperature 
T. Upon equating this fraction to the ratio of the corre
lated volumes at temperature T to that at temperature 
zero, we get 

RJ>(T)~Rm[f \g(r,T)\p(r)d^ 

x[/"|g(f,0)|P(f)d»r] . (2.10) 

We should remark that except for the fact that Eq. 
(2.7) follows from the partition function, Eqs. (2.8) to 
(2.10) have not been rigorously justified. We now let 

tanh/?x=fix, fix < 1 
= 1, fix> 1, (2.11) 

and substitute Eq. (2.11) into Eq. (2.10) to obtain 

Rc(T)~Rc(0)l-2ylny+fJi\ (2.12) 

where y— Tc/T, 
Te=JS"/lRc(0)J, 

and JS2 is defined in Eq. (2.3). Equation (2.12) is the 
important result of this section and is derived for the 
case when y< 1, i.e., T> Tc. 

3.1 Probability Distribution of the Field 
About an Impurity 

We define an effective field HQ at the impurity spin 
Mo, located at the origin by the relation 

(3.1) 
81= X) %'My; #2= 1L vow-

(roj<Rc) (roj>Rc) 

Since rj and /x;- are random variables, HQ is also a 
random variable whose probability distribution is 
determined by the probabilities associated with the 
random variables r3- and p,j. We found, in the previous 
section, that the spins giving rise to Hi are strongly 
correlated to MO, whereas those giving rise to H2 are 
approximately randomly oriented with respect to MO-
Thus, the fields Hi and H2 will be approximately inde
pendent random variables, and the probability dis
tribution of the total field P{HQ) will be given by the 
convolution of the probability distributions P(Hi) and 
P(H2). P(Hi) can be found for any impurity concen
tration by enumerating the possible positions of the 
impurities within the correlated volume and the proba
bilities that the particular sites are occupied. The 
magnitudes of the various fields are calculated using 
Vij in Eq. (2.2). For the details of the P(Hi) calculation, 
the reader is referred to Appendix 1. 

To obtain the probability distribution of the field H2, 
we use the statistical model of Margenau20 in conjunc
tion with the previously derived result that the spins 
in this region are randomly oriented with respect to 
the spin at the origin. As in KB, we obtain 

Pm~l^> «pH(7) !]+ 0 ( e x p-5'1 6 )' (3'2> 

16TT -j1 /2 JS2c 
where 

r(r=o)< ' [ • 3(ci?c
3(0)J v2 

><7.8JS2c. (3.S) 

To obtain the probability distribution of P(H2) as a 
function of temperature, we use Eq. (2.12) and find 
that for values of T/Tc<5. P(H2), then, is still approxi
mately Gaussian; Rc(0) in Eq. (3.3) is replaced by RC{T) 
given in Eq. (2.12). To find the probability distribution 
P(HQ), we convolve Eq. (3.2) with the discrete proba
bility distribution of Hi from the inside region. 

3.2 Qualitative Aspects of the 
Probability Distribution 

The calculation of the probability distribution P(Ho) 
for a particular strength of interaction and concen-

(2.13) 20 H . Margenau and W. Watson, Rev. Mod. Phys. 8, 22 (1936). 



A 1160 M I C H A E L W. K L E I N 

FIG. 1. Qualitative behavior of the probability distribution as a 
function of the impurity concentration, (a) The volume of the 
sphere with a correlation radius Rc> This volume is divided into a 
near region, intermediate region, and far region shown by different 
crosshatchings. The qualitative behavior of the RKY potential is 
shown below (a), (b) The corresponding three regions of the 
probability distribution of P(H0). (c) The correlated volume for a 
higher concentration, (d) The corresponding probability distri
bution for this higher concentration. A comparison of (b) and (d) 
shows that the effect of an increased concentration is to remove 
some probability from the center of P(HQ) and place it into the 
wings. 

tration becomes complicated and is most conveniently 
done with a computer. However, the characteristic 
behavior of P(HQ) is obtained from simple physical 
considerations. The discussion of P(HQ) will be centered 
about the two important results derived previously. 
These are: (a) the existence of the correlation length, 
(b) the random orientation of the spins located at large 
distances from the spin at the origin. 

Consequences of the Correlation Length T—0 

Since the fields from the spins located within the 
correlated volume have a normalized probability dis
tribution, and since these spins contribute a large 
spread (rms deviation) in effective fields (compared to 
the spread in the fields from the far-away spins) about 
the spin at the origin, the character of the probability 
distribution is primarily determined by the spins from 
the "inside" region. The "outside" region plays an 
unimportant role in our model, provided the spread in 
the fields arising from the far-away spins is sufficiently 
large to make P(Ho) continuous. (The sites in the 
lattice are discrete; thus the values of Hi are also 
discrete.) Once this latter condition is satisfied, the 
specific-heat results are not sensitive to the treatment 
of the far-away spins. This result may be an additional 
justification for the treatment of the "outside" region 
by an Ising model, instead of the presumably more 
correct isotropic Heisenberg model. We should point 
out that our present argument differs somewhat from 
that used by Marshall17 and by Klein and Brout3 to 
explain the low-temperature specific heat of dilute 
Cu-Mn, where it was believed that only the spins that 
are very far from the origin determine the low-tempera
ture specific-heat behavior of Cu-Mn. However, the 
previously obtained results for Cu-Mn are still correct; 

only the physical interpretation of the behavior of 
P(HQ) has changed in a significant way. 

We now discuss the qualitative behavior of the 
probability distribution of the field P(H0) as a function 
of the concentration, the strength of the RKY inter
action JS2

} and the temperature. 
To obtain the concentration dependence of P(Ho) 

we subdivide the correlated volume about the origin 
into three regions as shown in Fig. 1 (a). Since the RKY 
potential from the origin varies, approximately like r~3, 
the spins that are farthest away from the origin con
tribute small fields, and the spins close to the spin at 
the origin contribute large fields. The distribution of 
the fields from the three regions is drawn qualitatively 
in Fig. 1 (b). Next, consider the probability distribution 
of Ho for a larger concentration. The correlation length 
decreases in accordance with Eq. (2.6b). The correlated 
volume for this case is shown in Fig. 1 (c). Since P(Ho) 
is normalized to unity, the central region, which gives 
the large fields, now has a higher probability associated 
with it. Thus, the effect of an increase in the concen
tration is to remove some probability from the center 
portion (small fields) of P(Ho) and to place it into the 
wings, as shown in Fig. 1 (d). Therefore, the probability 
of having small fields will be inversely proportional to 
the concentration, whereas the probability of having 
large fields is proportional to the concentration. 

We should also note from Fig. 1 that the probability 
distribution has a maximum about some value other 
than # 1 = 0. The reason is as follows. The probability 
of having a certain field between Hi and H^+AHi is 
proportional to the volume which gives the value of 
AHi divided by the total "correlated volume." Since 
the volume is proportional to r*, the most probable 
fields are those obtained from the spins near the edge 
of the correlation length. This value of the field is not 
zero but is approximately given by H^~JS2/R<?. 
Therefore, P(Hi) is peaked about the value Hi~Hi°. 
Since Rc~

d is proportional to the concentration, the 
value of the Hi0 is also approximately proportional to 
the concentration. 

Also note that P(H) in Fig. 1 is symmetric about 
H=0. The reason for this is that, on the average, there 
are just as many spins oriented up as there are oriented 
down, and a specific-heat measurement does not dis
tinguish between an up-spin or a down-spin. However, 
if one considers the probability distribution in the 
presence of an external field, one has to include the 
asymmetry introduced into P(Ho) due to the polari
zation of the spins surrounding the one located at the 
origin. A sketch of this probability distribution is shown 
in Fig. 2. The behavior of P(Ho), where Ho is given by 
Eq. (3.1), was calculated by a computer for a fixed 
value of JS2 and for several concentrations. The results 
are shown in Fig. 2. Note the detailed concentration 
dependence of P(Ho) and that P(Ho=0) is inversely 
proportional to the concentration in agreement with the 
qualitative arguments presented. 
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FIG. 2. The probability distri
bution as a function of the concen
tration for a fixed value of inter
action strength JS2. JS2 is the 
strength of the Ruderman-Kittel-
Yosida potential at a distance of 
one lattice constant, and is ap
proximately 26°K for the case 
shown in the figure. The various 
concentrations c are indicated on 
each graph. The value of P(lh) at 
Ho = 0 is inversely proportional to 
the concentration in each case. The 
wiggles in the wings of P(H) arise 
from the finite number of values of 
H\ used in the calculation. The 
dashed line shows an approxima
tion to the nonsymmetrized proba
bility distribution actually experi
enced by the impurity. The curves 
were obtained using a computer. 
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Variation of the Probability Distribution with the 
Interaction Strength JS2 

From our previous discussion, it follows that as the 
strength of the interaction increases, so does the proba
bility for having larger fields. Thus, in general, the 
height of P(H0) near Ho—Q will be approximately 
inversely proportional to JS2. In Appendix 1, Eqs. 
(A1.4) and (A1.5), we derive the expression for the 
probability distribution of the effective field and find 
that the shape of P(HQ) depends only on the product 
of the strength of the RKY interaction and the con
centration. Thus, P(HQ) for an impurity concentration 
of ac and interaction strength of JS2 is the same as 
P(Ho) for a concentration of c and interaction strength 
of a(JS2), where a is any number. Therefore, Fig. 2 is 
also the representation of the probability distribution 
of a 0.21% impurity concentration with the interaction 
strength of 26, 52, 78, and 104°K. 

Variation of the Probability Distribution 
with Temperature 

The approximate variation of P(HQ) as a function 
of T is found by relating the variation of the correlation 
length with temperature, given by Eq. (2.12), to the 
probability distribution. Since the correlation length, 
in our approximation, decreases as a function of tem
perature, the effect of increasing the temperature will 
be similar to that of increasing the concentration. The 
physical reason for this can be understood by the 
following consideration. The spins that are located near 
the edge of the correlation length are only weakly 
correlated to the spin at the origin. As the temperature 
is decreased, these weakly correlated spins become 
randomized, thereby reducing the effective correlation 

length. This results in an increased probability of 
finding the spin at the origin in large fields. 

The value of Hi0 at which P(HQ) is a maximum also 
changes with temperature and is a function of Tc/T 
given by Eq. (2.12). For Tc/T not too small (roughly 
Tc/T between 1/5 and unity) we make the approxi
mation 

H^T^OyHi^T^To^RcHToyRm, (3.5) 

where RC
Z(T) is again given by Eq. (2.12). Since 

Tc=JS2/RcZ, and is thus proportional to the concen
tration, we find that the value of Hi0 at which P(J3d) 
is a maximum increases as a function of the tempera
ture. This appears to be in qualitative agreement with 
a Mossbauer experiment on dilute copper-iron.21 

We find that P(Fh) has a local minimum at Ho—0. 
For a subsequent discussion of the Mossbauer experi
ment, it is of interest to find the variation of this local 
minimum with various quantities. We observe that if 
aS>Hi°~ [VS2/JRC

3], then P(Ho) has a maximum instead 
of a local minimum at # 0 = 0 . The magnitude of the 
dip at H=0 depends upon the ratio £^# i ° / a \ From 
Eq. (3.3) and the value of Rc from Eq. (2.7), we find 
that £—1. However, we have not evaluated the esti
mated errors in the quantities Hi0 and <r. In order to 
see the variation of the dip of the probability distri
bution and the specific heat with £, we have calculated 
the central portion of P(Ho) and the low-temperature 
specific heat as a function of £, keeping the strength of 
the interaction JS2 a constant. We find that the specific 
heat is quite insensitive to the variation of £, whereas 
the dip in P(HQ) depends more strongly on £. 

21W. Marshall, T. E. Cranshaw, C. E. Johnson, and M. S. 
Ridout, Rev. Mod. Phys. 36, 199 (1964). 
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TABLE II. I represents the Zimmerman and Hoares data in the temperature region of 2 to 5°K, I I represents the Franck, Manchester, 
and Martinb data in the temperature region of 0.4 to 5°K, I I I shows the Crane and Zimmerman0 result in the temperature region of 3 
to 5°K, and IV shows Crane'sd data on Au-Fe. 

I 
I I 

I I I 
IV 

a See Ref. a, Table I. 

Substance 

Cu-Mn 
Cu-Fe 
Cu-Co 
Au-Fe 

b See Ref. 31. 

Major contribution to the 
specific heat 

P(H0) near #o = 0 
middle portion of P{HQ) 

wings of P{HQ) 
center and middle portion of P(H0) 

° See Ref. d, Table I. * See Ref. 24. 

Specific heat 

c[l/c~]=cQ 

c[c]=c2 

JS2/JS2C n-Mn 

1 
~1.4 
«0.5 
- 1 . 1 

3.3 Possible Verification of P(H0) Using 
a Mossbauer Experiment 

I t has recently been pointed out by Marshall et al?1 

that, in principle, a Mossbauer experiment gives a 
measure of the probability distribution of the effective 
field about an impurity in a dilute ferromagnet. 
Marshall's discussion for spin-J goes as follows. The 
hyperfine field h at the iron nucleus is a function of the 
effective molecular field Ho and is given by 

h=btanhH0fi/kT, (3.6) 

where b is the magnitude of the maximum hyperfine 
field at the nucleus, b is of the order of 105 G for iron. 
For a discussion of the hyperfine field at the nucleus 
the reader should consult one of several articles on this 
subject.22,23 We consider a system like Cu-Fe or Au-Fe, 
where the results derived in this paper should be 
applicable. From Eq. (3.6) we find that all the spins 
with fields yJH5>kT have a maximum splitting asso
ciated with their hyperfine spectrum, and those with 
fields ixH<kT will have a hyperfine splitting somewhere 
between zero and maximum. Therefore, the spins in 
low fields will tend to increase the background noise. 
A hyperfine spectrum will be observed whenever the 
number of spins with fields fiH^kT is sufficiently large 
so that the six-finger spectrum can be resolved from the 
background noise. I t was reported by Marshall et al.21 

that P(Ho) for Cu-Fe has a local minimum at # 0 = 0 . 
This is in qualitative agreement with our results shown 
in Fig. 2. However, at present we cannot comment on 
whether this minimum is sufficiently deep to explain 
the experimental observations of Marshall et al. I t is 
encouraging, however, that the experimentally ob
served maximum in P(Ho) moves to higher fields with 
increasing temperature which is in agreement with our 
theoretical predictions. 

4. SPECIFIC HEAT 

In the presence of the effective field Ho, the single-
particle energy is 

BHP> - ]Botajih0B<>P(Ho,p)dHo. (4.1) 

22 R. C. Preston, S. S. Hannah, and J. Heberle, Phys. Rev. 128, 
2207 (1962). 

23 Also, see A. J. F. Boyle and H. E. Hall, Rept. Progr. Phys. 
25, 441 (1962). 

The factor J arises from counting each pair interaction 
twice in the expression for the energy. The specific heat 
is 

Noc dEl((3) 

kBT2 dp 

Noc r 

2kBT2\ 
P(H0,(3)H0

2 $ech2pHodHo 

(dP{Ho) 

+0 
\ d/3 

(4.2) 

where No is Avogadro's number and c the impurity 
concentration. The term containing dP(Ho)/d/3 arises 
from the change in the probability distribution and is 
small near T=0. Using Eq. (A1.6) of Appendix 1, Eqs. 
(3.3), (2.12), (2.13), and (3.1), we obtain for the second 
term of Eq. (4.2), C/2>: 

Noc(l-Tc/T)2 r« r 1/x \2i 
C/ 2 ) ~ X > s / exp — M 

J-* L 2\Ber / J 4kBT2al32 

X% tanhd 
x* ' 

f32a2. 
dx, (4.3) 

where bs is defined in Appendix 1, (3Ho=x, and T>TC 

in the above equation. However, to facilitate the calcu
lation, we shall approximate the specific heat by the 
first term of Eq. (4.2). The effect of this approximation 
is that the theoretically obtained specific heat is pre
sumably too low for temperatures greater than 
r c = AS 2 [^^ c (0) 3 ]~ 1 . 

Using the first term of Eq. (4.2) with the form of 
P(Ho) shown in Appendix 1, we obtain 

Cv 

NockB 

2(2TT)1I2(<TP) S 

r° r 1/x \ 2 i 
as / exp — ( £ s) 

jf L 2\(3a I J 

X#2sech2x<fo= 

r - ( 

Nocks 

2(2TT) 
-/(<tf). (4.4) 

1/2 

Thus we find that the specific heat calculated from the 
zero-temperature probability distribution is a function 
of <rft and <J$OZJS2C/T. For ( o £ ) » l , we use Eq. (A1.5) 
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FIG. 3. The excess low-temperature 
specific heat ACV divided by the tem
perature r , as a function of tempera
ture for a fixed value of JS2 («26°K), 
and four different concentrations c. 
The very low-temperature specific 
heat is approximately independent of 
the concentration. At intermediate 
temperatures, ACV/T is proportional 
to the concentration; and at even 
higher temperatures, ACV/T is propor
tional to c2. 

C«0.84% 

2 3 4 

TEMPERATURE IN DEGREES KELVIN 

from Appendix 1 to obtain 

lim Cv«lN0kBT/2 (27T)1/2] (0.25) (c/a). 
T->0 

(4.5) 

Since a is proportional to c, the low-temperature 
specific heat is independent of the concentration and 
varies linearly with the temperature. This has already 
been shown.3 We also find from Eq. (4.5) that the very 
low-temperature specific heat is inversely proportional 
to the strength of the interaction JS2. Thus, if very 
low-temperature specific-heat experiments are available, 
we can determine the value of JS2 from the T=0 
intercept of the ACV/T data. We thus obtain the one 
single parameter necessary to determine the detailed 
behavior of the system. Equation (4.4) permits us to 
obtain the specific heat for a particular concentration 
and temperature once the specific heat as a function of 
T is known for one particular value of JS2 and c (at 
least for low temperatures). 

The qualitative behavior of ACV is found from Eq. 
(4.4) as follows: We find that the integral is multiplied 
by a factor of c; therefore, the concentration dependence 
of the specific heat will be c times the concentration de
pendence of the probability distribution. The inter
action strength JS2 and the concentration determine 
which part of the probability distribution gives the 
major contribution to the specific heat in a particular 
temperature region. Using the values of JS2 determined 
from Eq. (4.5) and the experimental low-temperature 
specific heat, we obtain that the major contribution to 
the specific heat for Cu-Mn in the 2 to 4°K range comes 
from the center of the distribution function which is 
proportional to c~l. Thus, the specific heat is inde
pendent of the impurity concentration. The major 
contribution of the specific heat for Cu-Fe in the region 

of 0.4 to 1.5°K comes from the middle portion of the 
probability distribution, which is approximately inde
pendent of the concentration. Therefore, the excess 
specific heat of Cu-Fe is proportional to the concen
tration. The major contribution to the specific heat of 
copper cobalt at about 5°K comes from the wings of 
the distribution function, and thus the specific heat is 
proportional to the square of concentration. The results 
are summarized in Table I I . The value for JS2 used for 
Cu-Mn is about 26°K, and all other values of JS2 are 
compared to that of copper-manganese and are listed 
in the last column of Table I I . The low-temperature 
specific heat was calculated for a fixed value of JS2 and 
several concentrations. The results are shown in Fig. 3. 
The calculations were performed using the T=0 
probability distribution. However, using both terms in 
Eq. (4.2) would result in a somewhat larger specific heat 
at higher temperatures. The comparison between theory 
and experiment in Cu-Fe has been made previously,4 

showing good agreement in the low-temperature low-
concentration range. For higher temperatures, the 
Cu-Fe excess specific heat is not proportional to the 
square of the iron concentration as predicted from the 
simple J T = 0 probability distribution. At this point, 
we cannot make any definite comments on why this 
discrepancy occurs. One possible reason is that there is 
an additional contribution to the specific heat arising 
from a different mechanism, which may be greater than 
the cooperative magnetic specific heat for these very 
low concentrated alloys, particularly since the tem
perature is such that little spin entropy remains in the 
magnetic system. 

The data on gold-iron24 are again in agreement with 

24 L. T. Crane (private communications). I am grateful to Dr. 
Crane for communicating his data to me prior to publication. 
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our theory. At 2'=1.5°K, ACV/T is independent of the 
concentration and is proportional to the concentration 
for somewhat higher temperatures. The Cu-Co data 
for low concentrations are proportional to the square 
of the concentration; however, a detailed quantitative 
comparison of the experimental and theoretical results 
for Cu-Co, over the whole temperature range, becomes 
difficult for the following reasons: (a) The value of JS2 

has to be estimated from the T=0 intercept of ACV/T> 
and for this case the experiments were not performed at 
sufficiently low temperatures to get a good estimate of 
JS2. (b) The T=0 probability distribution should be 
corrected for these higher temperatures using Eq. (4.4). 
(c) The specific heat of Cu-Co is quite sensitive to the 
particular treatment to which the material is exposed, 
as was pointed out previously.10,11 

Up to the present time, we have considered the Ising 
model, i.e., only up and down orientations of the spins. 
The specific-heat results obtained in Fig. 4 are therefore 
valid for a spin-J system. For a spin S, there may be 
25+1 orientation of the impurity in its effective 
molecular field Ho. As a result of this, t anh^o in Eq. 
(4.1) should be replaced by a Brillouin function in Eq. 
(4.2). The T=0 intercept of ACV/T is still inversely 
proportional to JS2; however, a larger value of JS2 is 
necessary to obtain the same intercept in ACV/T as in 
the Ising case. Also, for a fixed intercept of ACV/T, the 
specific heat has a smaller decrease as a function of 
temperature than for the spin-! case. This introduces 
an additional parameter into the specific-heat calcu
lations and results in a quantitative change in ACV as a 
function of T.24a However, all the previous qualitative 
arguments are still valid. 

The magnetic susceptibility of these dilute ferro-
magnets is discussed in Sec. 5 of KB. The important 
result found there is that the susceptibility exhibits a 
maximum as a function of temperature. The tempera
ture at which this maximum occurs is approximately 
proportional to the strength of the R-K interaction and 
the concentration. The latter result is in agreement with 
experiments on iron, manganese, and chromium in 
gold12 and manganese in copper.6 

5. MAGNETIC PROPERTIES OF GOLD-IRON 

Having discussed the thermodynamic behavior of 
dilute ferromagnets, we address ourselves to the case 
of iron impurities in gold. We single out this sytem 
since a great deal of interest exists as to its magnetic 
state. We find that the experiments, which have been 
hitherto given conflicting interpretations, seem to be 
consistent with our theory of dilute ferromagnets and 
our model. The experimental results are as follows. 

24a Note added in proof. One should use such an argument for 
the Ag-Mn32 data where ACV/T versus T for Ag-Mn drops off at 
a much slower rate than that of Cu-Fe. However, until more ex
perimental data is available a detailed comparison of experiment 
with theory is not warranted. 

Borg, Booth, and Violet25 (BBV) have described a 
Mossbauer experiment on gold-rich Au-Fe alloys. They 
found that the paramagnetic component of the Moss
bauer spectrum disappears at temperatures of 2.2 to 
4°K, even at as low a concentration as 0.84% iron in 
gold. The spectrum also exhibits the typical six-finger 
hyperfine splitting.22 At much higher temperatures the 
paramagnetic component of the spectrum reappears 
again. Henry26 has measured the approach to saturation 
of a 5% concentrated iron in gold at several tempera
tures. BBV and Henry both concluded that long-range 
magnetic effects predominate in dilute Au-Fe. Inter
preting his result according to a Curie-Weiss law, 
Henry also indicated that the ordering seems to be 
ferromagnetic. However, at very low temperatures 
(1.5 to 4°K), his data exhibited a characteristic anti-
ferromagnetic behavior in that the magnetization 
increased with increasing temperature. Others27 have 
interpreted BBV's results to indicate that dilute Au-Fe 
is antiferromagnetic. More recently, however, an al
ternative point of view was presented by Crangle and 
Scott.28 They have measured the magnetization M of 
Au-Fe, in applied fields H up to 17 kG for different 
temperatures and plotted H/M versus M2 for various 
constant temperatures to find the Curie temperature 
by a previously derived method.29,30 Crangle and Scott 
conclude that no long-range order exists for iron con
centrations less than about 11%. Thus, they conclude 
that short-range effects dominate in dilute gold-iron 
but give no reason for their origin. 

We would like to correlate the above experiments 
with the specific heat24 and magnetization12 measure
ments on Au-Fe using our model. As outlined before, 
the very low-temperature specific heat of these systems 
is inversely proportional to the strength of the RKY 
potential JS2. Thus, we can deduce the value of JS2 

using the T=0 intercept of ACV/T in conjunction with 
Eq. (4.5). This intercept, for Au-Fe, is found from 
Crane's24 result to be approximately 4mJ/deg2-mole. 
Comparing this intercept with that for Cu-Mn31 gives 
the value of JS2 for Au-Fe to be about 1.1 times that 
of Cu-Mn. The temperature at which the susceptibility 
is a maximum, rmax, is proportional to JS2, and the 
impurity concentrations c. For Cu-Mn, jTmax~6606°K. 
Since JS2 for Au-Fe is about 1.1 times that of Cu-Mn, 
we roughly estimate that TmsXx~7.2°K for each percent 
of iron. The experimental value found by Lutes and 
Schmit12 is 8°K for each percent iron. 

If we consider P(Ho) in Fig. 2, and use the value of 
JS2 obtained from the low-temperature specific-heat 

25 R. J. Borg, R. Booth, and C. E. Violet, Phys. Rev. Letters 
11, 469 (1963). 

26 W. E. Henry, Phys. Rev. Letters 11, 468 (1963). 
27 A. Arrott, Bull. Am. Phys. Soc. 9, 114 (1964). 
28 J. Crangle and W. R. Scott, Phys. Rev. Letters 12,126 (1964). 
29 K. P. Below and A. N. Goryaga, Fiz. Metal, i Metalloved 2, 

3 (1956). 
30 A. Arrott, Phys. Rev. 108, 1394 (1957). 
31L. T. Crane and J. E. Zimmerman, Phys. Chem. Solids 21, 

310 (1961), 
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experiment24 to calculate P(Ho) for iron, we find that 
with 0.8% iron in gold at r=2.2°K, about 20% of the 
impurities are in effective fields \xH<kT and 80% in 
fields ixH^>kT (this latter percentage increases with 
concentration). Thus, we will observe the six-finger 
hyperfine spectrum provided the background noise 
(including that from the 20% of the spins) is not 
sufficiently large to smear out the hyperfine spectrum. 
(See Sec. 3.3 for a discussion of this point.) Also, since 
at 2.2°K very few spins are in zero-effective fields, the 
model gives the complete disappearance of the para
magnetic component of the spectrum. We conclude, 
therefore, that neither the complete disappearance of 
the paramagnetic spectrum nor the appearance of the 
six-finger hyperfine-splitting necessarily indicate long-
range order. Thus we feel that BBV's experimental 
results may be consistent with this theory, except that 
we differ with their conclusion that long-range order 
exists in very dilute (less than 5% iron) Au-Fe. How
ever, to compare BBV's result with our model in detail, 
one should analyze the relative intensities associated 
with the six fingers and compare it to that associated 
with the noise spectrum. 

6. DISCUSSION 

From the results presented here we conclude that a 
RKY potential between the magnetic impurities is, to 
a first approximation, the important interaction in 
determining the low-temperature cooperative phe
nomena in localized transition-ion impurities in noble 
metals. We take exception to this conclusion for the 
case of Au-Co, where no maximum occurs in the low-
temperature magnetic susceptibility,12 and it is not yet 
clear whether the anomalous specific heat is of the same 
nature as that described by our model. Some interesting 
experiments should further clarify the validity, as well 
as the shortcomings of the model in the very low-
temperature region. Copper-cobalt11 and Ag-Mn32 

exhibit a dip in ACV/T in going towards very low 
temperatures. It is likely that this dip arises from the 
dip of P(HQ) near H0=0, as indicated in Fig. 2. How
ever, it is not yet clear whether the dip predicted by 
our model is sufficient to explain the low-temperature 
dip in the specific heat. Therefore, it would be very 
useful to perform low-temperature specific-heat meas
urements starting from as low a temperature as is 
practical to higher temperatures, for impurity concen
tration from 0.1% up to several percent.328. At the same 

32 J. De Nobel and F. J. Du Chatenier, Physica 25, 969 (1959). 
32a Note added in proof. Such a very low-temperature specific-

heat measurement should also indicate the behavior of P(H) near 
H=0, and thus give an indication on the validity of the Ising 
versus Heisenberg model. This point is sufficiently important that 
we shall examine the validity of the Ising model in the immediate 
future. Also, a detailed experimental determination of the total 
entropy of each of these systems would give a useful comparison 
with theory. Up to now we have only made a rough comparison 
of the entropy of Cu-Co [X. T. Crane and E. Zimmerman, Phys. 
Rev. 123, 113 (1961)] as obtained from the integrated area under 
the specific-heat curve. We used the Ising model and the disagree
ment between theory and experiment is less than a factor of 2. 

time, it would be of interest to find whether ACV is 
proportional to the square of the impurity concen
tration for more highly concentrated iron impurities in 
gold (up to several percent). Iron impurities in gold 
are convenient to study since the solubility of Fe in Au 
is larger than some other transition-ion impurities in 
noble metals. It would also be useful to extend the 
Cu-Co and Au-Fe measurement to 0.4°K, the lowest 
temperature at which Franck et alP have performed 
their experiments. 

Another set of experiments of interest from the point 
of view of this model would be a systematic set of 
Mossbauer experiments on iron impurities in gold, 
silver, and copper. The interpretation of the Mossbauer 
experiment in terms of the probability distribution of 
the effective field is given briefly in Sees. 3 and 5. 
Correlating the Mossbauer experiments with specific-
heat and magnetization measurements is useful for 
interpreting the magnetic state (order versus disorder) 
of magnetic impurities in noble metals. Again, we wish 
to emphasize that a well-defined six-finger hyperfine 
spectrum from a Mossbauer experiment does not 
necessarily indicate long-range order. 

Also, according to this model, a maximum in the low-
temperature magnetic susceptibility in these materials 
with a positive (or negative) temperature intercept 
Tc° in the inverse magnetic susceptibility does not 
indicate ferromagnetism (or antiferromagnetism). This 
is very well demonstrated by the measurement of 
Kaufman, Pan, and Clark,34 where the susceptibility 
intercept changes with the concentration. 
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APPENDIX 1 

In the appendix we show how to calculate the proba
bility distribution of the field P(Ho) for a particular 
concentration at T=0, and the change in P(H) as a 
function of temperature. We should keep in mind that 
the division of the field into H± and Hi given by Eq. 
(3.1) follows from the partition function. The calcu
lation of P{B.i) and result (3.3) follow from the sta
tistical model of Margenau.20 But it is by no means 
clear how to calculate P(Hi), the probability distri
bution of the field from the "inside" region. In KB, 
the calculation was made by permitting 0, 1, 2, 3, etc., 
spins to be located within a radius Rc from the origin, 
but in KB we were only interested in the behavior of 

33 J. P. Franck, F. D. Manchester, and D. L. Martin, Proc. Roy. 
Soc. (London) A263, 494 (1961). 

34 A. R. Kaufman, S. T. Pan, and J. R. Clark, Rev. Mod. Phys. 
17, 87 (1945). 
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P(HQ) near Ho—0. In this paper the detailed shape of 
P(Ho) over all HQ is of interest; therefore, more care 
has to be exercised in the treatment of P(Hi). Fortu
nately, the treatment outlined in KB and the one used 
here give the specific-heat results which we estimate to 
be in an agreement with each other to better than 20%. 
Thus, for the specific-heat calculation, it is not very 
critical how one treats the "inside" region, provided one 
adjust the strength of the interaction accordingly. The 
method outlined below for the treatment of the inside 
region is consistent with the statistical model20 and is 
also easier to handle. 

We recall that there are, on the average, about 3.3 
spins within the correlation length, one spin at the 
origin, and 2.3 more. We therefore allow either 1 or 2 or 
3 spins to be within the correlation length, each with 
probability ^. (Allowing 3 spins to be within the 
correlated volume is somewhat arbitrary. Fortunately, 
the quantitative behavior of ACV is not very sensitive 
to this assumption.) The value of the field at r~Rc is 
given by H(RC) = JS2/RC*^TC; we incorporate the 
Boltzmann constant in Tc. We let the impurity be uni
formly distributed over the correlated volume. How
ever, for convenience (for machine-calculational pur
poses) we let the field from a single spin within the 
correlation length take n possible values, where the 
&th field Hk is calculated according to the relation 
Hk=JS2/rkSj where we take rk to be (k/n)Rc; thus, 
Ekz=1[_n/k~fTc=bkTc. The probability for the value 
Hk is P(Hk)=(3r2Ar)/RcK But Ar~Rc/n, thus P(Hk) 
= (3/n)(rk/Rc)

2=3k2trs. However, Hk may be positive 
or negative with a probability given by Eq. (4.11) of 
KB, sm&P{Hk) = tk{3k2frz)^ak, where h=\-%{rk/Rc)z 

when Hk is positive and %(rk/Rc)s when Hk is negative. 
Thus, we calculated the elementary probabilities with 
a single spin within the correlated volume. 

Next, we allow two spins to be located within the 

W. K L E I N 

correlation length; then 

a^P(Hj=Hkl+Hk2) = (3*0 2 * i 2 W, 

For 3 spins we obtain 

at^PiH^Hk^+Hkz+Hks) = (3rr*yk?mt, 

Hl=ffitkf*+k2*+kz*'lTc=biTc.
 ( A 1 ' 2 ) 

Convolving the probability distribution from the inside 
region with that of the outside region using Eq. (3.3) 
gives 

P(H0)=- £ -VHC^O-^O/CT] (A1>3) 

and using Eq. (3.4) gives 

3(2TT) 1 / 2 —kj.i a 

where k, j , and / take values from 1 to n. Note that as 

and bs are independent of the strength of the interaction, 
the concentration, and the temperature. We find that, 
for any concentration, 

P ( ^ 0 = 0)-[ l / (27r)1 /V](0.25) . (A1.5) 

The change in P(Ho) as a function of temperature is 
approximately 

dP(H0)^ 1 /da\ 

d/3 ~ 3 ( 2 T T ) 1 / 2 A < W 

8=k,j,l 

X C ( H A ) ( f f A - 6 . ) - l ] > , (A1.6) 

where <r(fi) is given by Eq. (3.3) with Rc replaced by 
JRCGS) as given by Eq. (2.12). 


